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SUMMARY

This paper presents the basis of a computational time-marching approach, for large-aspect ratio lifting systems
submitted to unsteady motions, using the lifting-line concept. When engineering requires such an approach,
quasi-steady ones are currently encountered, which are based on Prandtl's lifting-line approach for steady ¯ows.
The results of recent theoretical works on the unsteady lifting-line, based on the matched asymptotic expansion
technique, allow one to improve, on sound theoretical foundations, this quasi-steady approach. The proposed
approach solves a ®rst-order approximation of the unsteady outer problem for the time-evolution of the spanwise
circulation distribution along the lifting-line. It introduces, in the same kind of process as Prandtl's one, for each
span section, an unsteady two-dimensional description of the aerofoil behaviour together with a formulation for
the three-dimensional unsteady induced velocity on the lifting-line. The approach's validity is examined through
a simple numerical implementation for three wing motion cases. Considering the numerical results it produces, it
can be stated that the unsteady lifting-line model implementation can be considered as time-consistent, whereas
the quasi-steady one cannot. Furthermore, the approach presented here allows large time steps, even for very
unsteady wing motions, and compares favourably with some classical results of R. T. Jones. # 1998 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The development of computational ¯uid dynamics techniques, together with the development of

computer facilities, allows numerical simulations of increasingly complex ¯ows. Nevertheless,

sophisticated numerical approaches such as those based on the discretization of the Euler=Navier±

Stokes equations, increasingly ef®cient though they are, often do not provide a clear qualitative

understanding of the physical phenomena involved, whereas such an understanding, which is most

important for engineering purposes, can be achieved through an asymptotic approach.

One of the most widespread asymptotic approaches as far as aerodynamics is concerned is the

lifting-line model for large-aspect-ratio lifting systems (AR � b=c� 1, where b is the span length

scale and c is the chord length scale) at subsonic speed.
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The steady lifting-line model, as introduced by Prandtl, is obtained by considering a two-

dimensional problem in each span section, where the ®nite aspect ratio of the wing is accounted for

via an induced incidence, and leads to the integral equation that governs the spanwise circulation

distribution. Van Dyke1 (see also References 2 and 3) has exhibited the singular perturbation

characteristic of this problem once linearized and, with the help of the matched asymptotic expansion

(MAE) technique, elaborated an asymptotic solution in the case of steady ¯ows for unswept wings.

This, particularly, justi®es Prandtl's approach as a ®rst-order approximation for the outer problem,

using Van Dyke's terminology. An important feature of this concept is its unrivalled ease and

¯exibility of implementation, particularly when the computation time and resources are critical

constraints (design cycles including many con®guration investigations, quasi-real-time simulation,

etc.). This approach has led to many widely used computing applications, which very often extend the

model from the theoretical framework in which is was elaborated (linearized steady ¯ow for an

unswept wing) to non-linear situations (cambered aerofoils, swept wings, free wake, etc.).

The theoretical ef®ciency of MAE methods induced, from the mid 1970s, several extensions to

Van Dyke's basic theory, mainly in the cases of curved and swept wings and for unsteady ¯ows. One

can quote the works of James,4 Van Holten,5 Cheng,6±8 Ahmadi and Widnall,9 Guiraud and Slama10

and more recently, the outstanding works of Guermond and Sellier,11±13 who put forward a uni®ed

lifting-line theory for an arbitrary wing in harmonic motion through the whole spectral domain. Thus

this rigorous theory can now be considered as achieved and complete, and its straightforward

numerization provides invaluable results. Its applications are nevertheless restricted to the theoretical

framework in which it has been elaborated, i.e. established periodic linearized movements of the

wing.

As things are at present, as soon as engineering requires discrete time-marching unsteady lifting-

line computations (helicopter rotor, wind turbines, air propellers, aerodynamics±structure coupling

computations, etc.), one almost only meets what can be considered as quasi-steady models (see e.g.

References 14 and 15). Practically, these approaches deal with the time evolution of the spanwise

circulation distribution and are mere empirical extensions of the steady Prandtl lifting-line model, as

they account for the unsteady three-dimensional wake issued from the trailing edge by a steady-type

induced incidence effect and generally use steady aerofoil models which are sometimes replaced by

more or less unsteady aerofoil behaviour schemes. As a matter of fact, if this is justi®ed in the steady

case, as shown by Van Dyke, it is not in the unsteady one.

The objective of this paper is thus to show that it is possible to elaborate, from the results of the

theoretical developments mentioned above, a ®rst-order approximation of the unsteady outer

problem,whichisactuallyanimprovementof thequasi-steadyapproach.This thenyieldsanumerical tool

allowing one to compute the time evolution of the spanwise circulation distribution through a really

unstationary time-marching lifting-line approach. This paper does not intend to be comprehensive on

such a subject, as extensions of the basic approach presented here can easily be imagined, some of

them being in progress, but has rather to be interpreted as a ®rst approach to this problem.

A simple computation implementation, the aim of which is only to validate the present approach,

has been devised on the same discretization basis for both quasi-steady and unsteady cases. A

numerical investigation in the quasi-steady case shows that this approach cannot be considered as

time-consistent as soon as unsteadiness is not negligible. Compared with the quasi-steady

implementation, the unsteady one is built on the same algorithm, requires only a little programming

effort and leads to only slight increases in computing time. On the other hand, this unsteady

implementation settles the time consistency of the model and shows that signi®cantly large

computation time steps are allowable, even for very unsteady motions, which is of paramount

importance for computation performances. Finally, the results are compared favourably with some

classical results of R. T. Jones.
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2. SOME RESULTS FROM UNSTEADY LIFTING-LINE THEORY

2.1. Introduction

The objective of this section is to present, in a very condensed manner, what we need from the

unsteady lifting-line theory. Most of it comes from the paper by Guermond and Sellier,13 which

brilliantly synthesizes this problem, and after which writing anything valuable requires an

exceptional mastery of this dif®cult subject. This is why the reading of that paper is recommended

for a clear and comprehensive understanding of what follows, as well as for any theoretical

justi®cation.

This theory is built on a similar set of hypotheses as those leading to the steady lifting-line theory;

that is, inviscid irrotational incompressible ¯ow, around a thin large-aspect-ratio wing, submitted to

small time-harmonic oscillations (heave, pitch, deformation, etc.) close to a rectilinear uniform

translation, so that the wing and the wake issued from its trailing edge and extending to downstream

in®nity remain in the neighbourhood of the surface S and S respectively, both included in the (O, x, y)

plane (see Figure 1). The wing and the wake are, in a classical manner, represented by vorticity

distributions on the surfaces S and S respectively.

This problem involves three characteristic length scales, namely the chord length scale c, the wing

span length scale b and the motion wavelength l � 2pU=o, where U is the freestream velocity and o
is the oscillation radian frequency. Cheng has identi®ed ®ve frequency ranges in the case of high-

aspect-ratio wings �c� b�: very low frequencies �c� b� l�, low frequencies �c� b � O�l��,
intermediate frequencies �c� l� b�, high frequencies �c � O�l� � b� and very high frequencies

�l� c� b�.
The inner and outer asymptotic expansions are performed relative to the small parameter

e � 1=AR � c=b, as for the steady case.

2.2. Domain decomposition

Let M �x; y� be a point of S. Following the approach using the MAE technique and described by

Guermond and Sellier,13 the in¯uence of the vorticity distributions on S and S at the point M may be

decomposed into that of the vortices located at distances of order c and that of the vortices located at

distances of order b or larger. In the plane �O; x; y� the inner domain I is de®ned as the set of points

whose distance from M is of order c. The diameter of I is set to an intermediate length scale d

characterized by c� d � b. Two outer domains must be de®ned. The ®rst one, denoted by Owi is

constituted of the points located in the wake of the inner domain at distances of order b or larger (see

Figure 2). The width of Owi is set to the intermediate reference scale d. The second outer domain,

Figure 1. Three-dimensional unsteady linearized problem
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denoted by O, is composed of the points situated outside Owi and at a distance from M of order b or

larger (see Figure 2). The velocity induced at M by the vorticity distributions is the sum of the

contributions of the three domains I ;Owi and O:

w�M� � win�M� � wout�M�;
where win�M � corresponds to the inner domain I and wout�M � to the outer domain O [ Owi.

2.3. Velocity induced by outer domain O [ Owi

In the outer domain O [ Owi the reference length scale is b in both spanwise and streamwise

directions. As a result, from this domain, the details of the geometry of the wing in the chordwise

direction become insigni®cant; the wing degenerates into a line L, and M merges into M0 2 L. For

this outer domain the line L is a lifting-line as in Prandtl's model. It can then be shown that

wout�M� � eÿikxwout�M0�;
where wout�M0� is the ®nite part (in Hadamard's sense) of the downwash induced at M0 by the

vorticity distributions of the outer domain O [ Owi (lifting-line and wake) and where eÿikx, with the

chord-reduced oscillation radian frequency k � oc=U , indicates a chord sinusoidal downwash

modulation.

2.4. Velocity induced by Owi

In the domain Owi, the length scale in the spanwise direction is c, whereas b is the length scale in

the streamwise one. The width of Owi being of order d, at the ®rst approximation order, Owi may be

considered as a two-dimensional semi-in®nite vortex sheet whose upstream boundary matches the

local tangent to L at M0 and whose vorticity is aligned with this tangent. It can be shown that the

downwash wwi�M � induced at M 2 S by this vortex sheet reads, as for wout

wwi�M� � eÿikxwwi�M0�:
This term is important, as it means that spanwise ¯ow perturbations of length scale of order c, which

are generated in the inner domain I by the wing motion, are convected in the outer wake and are still

active when they reach distances of order b and greater.

Figure 2. Domain decomposition
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2.5. Velocity induced by inner domain I

In the inner domain, c is the common reference scale for both streamwise and spanwise directions

and the diameter of I is of order d. This domain is composed of the wing section on which M is

situated, together with its close wake. At the ®rst order of approximation, only the component of

vortices aligned with the local tangent to the lifting-line is of interest; furthermore, these vortices may

be considered as constant in the spanwise direction. The downwash induced by these vortices may be

decomposed into the downwash induced by the bound vortices (located on S), wbound�M �, and that

induced by the free vortices (located on the part of the wake S included in I), wfree�M �. Consequently,

wbound�M � and wfree�M � are two-dimensional contributions, but their sum is not the complete two-

dimensional downwash w2D�M �, because, however large the ratio d=c is, wfree�M � will never include

the in¯uence of the vortices which have been convected out of I at distances of order b or larger. The

vortices in question are those of Owi. As a consequence, the exact two-dimensional downwash

w2D�M � is the sum of wbound�M �;wfree�M � and wwi�M �:
w2D�M � � wbound�M � � wfree�M � � wwi�M �:

2.6. First-order complete downwash

Finally, on the basis of the MAE technique the velocity ®eld induced by the inner and outer vortex

systems can be written to the ®rst order of approximation as

w�M � � w2D�M � � wout�M � ÿ wwi�M � � o�1=AR�: �1�
The term wwi�M � has to be subtracted in (1), since it appears twice, once in w2D�M � and another time

in wout�M �.

3. AN APPROACH FOR TIME-MARCHING LIFTING-LINE COMPUTATION

The objective of the present section is to derive from the results presented in Section 2, and

particularly from expression (1), a time-marching unsteady lifting-line computation method for the

outer problem, exact to the ®rst order of approximation.

3.1. Velocity ®eld scheme

First of all, equation (1) can be rewritten to ®rst order as

w�M � � w2D�M � � wi�M �; �2�
where, according to Prandtl's approach, w2D�M � corresponds to the normal perturbation velocity in

the two-dimensional case (remaining when AR!1) and wi�M � is customarily named the induced

velocity, which represents the correction to this two-dimensional case due to the ®nite aspect ratio of

the wing. As, from relation (1), wi�M � � wout�M � ÿ wwi�M �, this leads in the case of a straight

unswept wing to the interpretation ®rst put forward by Van Holten5 and taken up again by Ahmadi

and Widnall.9 It may accordingly be stated that, to ®rst order, the induced velocity ®eld for a given

point M of the wing, wi�M �, is the difference between the velocities induced by two vortex systems

relating respectively to O [ Owi (i.e. wout� and Owi (i.e. wwi). This is why an unsteady lifting-line

model that considers only wout and does not take wwi into account (as most empirical models do) fails

irremediably as soon as unsteadiness becomes signi®cant.
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Ahmadi and Widnall have also noticed that the induced velocity ®elds at any span station along the

lifting-line for each of the vortex systems are logarithmically singular, but that their difference, which

is precisely wi�M �, no longer is.

It can of course be noticed that this result is a generalization of Prandtl's steady case approach for

straight unswept wings. The steady induced velocity may be described in the same way: the wake

corrresponding to O [ Owi is free from unsteady aspects, the contribution of Owi and the chord

dependence vanish, and it is then possible to convert the constant induced velocity into an induced

incidence, resulting from the composition of the freestream velocity U and this constant induced

velocity.

Next the induced velocity ®eld wi�M � may be written as

wi�M � � wi�M0�eÿikx;

where

wi�M0� � wout�M0� ÿ wwi�M0�:
The chord-reduced oscillation frequency k � oc=U has already been mentioned. Introducing the

span-reduced oscillation frequency n � ob=U and limiting the approach to low and very low

frequencies �b� l or b � O�l��, so that for high aspect ratios AR; n � O�1�, it can be seen that

k � n=AR � o�1�; thus eÿikx is only slightly different from unity and wi�M � is only slightly different

from wi�M0�. Therefore, to ®rst order, for low frequencies the chord sinusoidal downwash modulation

will be neglected and wi�M � considered as constant along the chord. The generality of Guermond and

Sellier's approach through the whole spectral domain is of course lost here, but this seems necessary,

as will be seen later.

3.2. Basis for model formulation

It is now possible to suggest the principles of a ®rst-order formulation for the unsteady lifting-line

outer problem, based on the same kind of process as the one developed by Prandtl in the steady case.

As far as the outer problem is concerned, the wing reduces to the lifting-line L, and the only

unknown at any instant t is the spanwise circulation distribution along this line, G�y; t�. Furthermore,

the induced velocity ®eld is considered as constant along the chords of the aerofoils constituting the

wing: wi�M � � wi�M0�, M0 2 L. This a priori restricts the approach's validity to the low- and very-

low frequency domains, as shown in Section 3.1; it may however be noticed that for classical

engineering application such as those mentioned in Section 1, for which only low frequencies are of

interest, this limitation is not really troublesome. On the other hand, this consistency is crucial as it

allows one to adopt Prandtl's approach, since the three-dimensional aspect of the ¯ow can be

accounted for via an induced velocity wi on the lifting-line.

Then the solution of the outer problem (the spanwise circulation distribution along the lifting-line L

at the considered instant t;G�y; t�� will be sought through the resolution for each span station of the

wing of a two-dimensional unsteady problem (corresponding to w2D in (2)) that takes into account the

®nite aspect ratio of the wing via the induced velocity term wi�M0� as de®ned in Section 3.1.

Actually, this approach is quite comparable to Prandtl's one for the steady case, but it can be seen that

an unsteady aerofoil behaviour description is required for each span section and that the concept of an

induced velocity on the lifting-line does not have the same meaning.

Moreover, from Section 3.1 it is possible to settle the status of the quasi-steady approaches. As

mentioned in Section 1, these approaches are empirical extensions of the steady Prandtl's lifting-line

model and differ from the here-proposed unsteady process on two points. First, the two-dimensional

problem generally involves a 2D steady aerofoil model (often issued from experiments, with Mach
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and Reynolds number effects) instead of an unsteady one; it may also be noted14 that empirical

attempts have been made to introduce 2D unsteady models, including, in some cases, dynamic stall

descriptions. Secondly, it accounts for the unsteady three-dimensional wake by a steady-type induced

incidence based on the in¯uence of the whole outer domain O [ Owi, omitting the negative

contribution of Owi in the induced velocity wi on the lifting-line (and which actually does not exist in

the steady case). It can therefore be said that any attempt to improve such an approach must take

these two points into account.

4. MODEL FORMULATION

We will ®rst examine in Section 4.1 the three-dimensional unsteady induced velocity wi�M0�. Then

the formulation of the two-dimensional unsteady problem, based on a linearized unsteady aerofoil

approach, will be considered in Section 4.2, for which the in¯uence of the 2D far wake will partly

combine with wi�M0� and lead to the formulation of the problem exposed in Section 4.3.

In this paper the formulation is limited to straight unswept and rigid wings. This is not a theoretical

limitation, and at present this formulation is in the process of extension to non-straight and swept

wings.

4.1. Unsteady induced velocity

The results relating to the induced velocity scheme, as displayed in Section 2, rigorously apply to

periodic established motions. It has to be assumed here that these results are still valid in the case of

transient or non-established periodic motions. This hypothesis may be justi®ed intuitively, arguing

that such motions may always be regarded as part of a periodic installed movement, the period of

which is large enough so that the wake shed during the previous periods has been convected far

enough for its in¯uence on the lifting-line (i.e. the velocity it induces) to become negligible.

The objective of this section is to derive from the above statements an expression for the unsteady

induced velocity which will be used later on.

In the case of straight unswept wings the lifting line L is the segment

x � z � constant � 0 ÿ b=24 y4 b=2;

and the induced velocity on the lifting-line as de®ned in Section 3.2 varies along the span. It depends

also on the considered instant t, as wi is the velocity induced by the wake shed from the lifting-line

whose geometry and spatial density distributions are time-dependent, according to the wing's

unsteady motion and the wake's convection; thus

wi�M0� � wi�y; t� � wout�y; t� ÿ wwi�y; t�: �3�
The wing and the wake are represented, as already mentioned, by vorticity distributions on S and S

respectively. The velocity induced at any point P�x; y; z� by such distributions whose densities are

gx�x; Z� in the x-direction and gy�x; Z� in the y-direction can be written classically (see e.g. Reference

16) as

w�x; y; z; t� � ÿ 1

4p

�
S[S

gy�x; Z��xÿ x� � gx�x; Z��yÿ Z�
��xÿ x�2 � �yÿ Z�2 � z2�3=2 dx dZ: �4�

Then wout�y; t�, corresponding to the outer domain O [ Owi, is the velocity induced on the lifting-

line L by the lifting-line itself (S turns to L, and for a straight unswept wing this contribution is zero)
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and the 3D vortex sheet (S turns to a 3D wake shed from the lifting-line L and extending to the

downstream limit x0) and can be written as

wout�y; t� � ÿ 1

4p
FP

�b=2

ÿb=2

�x0

0

gy�x; Z��ÿx� � gx�x; Z��yÿ Z�
��ÿx�2 � �yÿ Z�2�3=2 dx dZ: �5�

It is worth mentioning that the double integral in (5) is singular and has to be taken in the ®nite part

(FP) sense as introduced by Hadamard (see Reference 13).

As stated in Section 2.4, wwi�y; t� is the velocity induced on the lifting-line by a semi-in®nite two-

dimensional vortex sheet whose upstream boundary is tangent to the lifting-line L and whose density

then corresponds to the local value of gy�x; Z� for Z � y, i.e. gy�x; y�, and can be written as

wwi�y; t� � 1

2p
FP

�x0

0

gy�x; y�
x

dx: �6�

The integral in (6) is also singular and must also be taken in Hadamard's ®nite part sense.

Then the expression of the induced velocity on the lifting-line,

wi�y; t� � wout�y; t� ÿ wwi�y; t�; �7�
is obtained from (5) and (6).

The densities gx�x; Z� and gy�x; Z� in wout and wwi are related classically to the time and span

variations of the circulation distribution G�y; t�. These are spatial densities, relating to the wake-

describing co-ordinates �x; Z�, and their values are set once and for all when shed. Consider a vortex

particle of the wake shed at the span location y and at time t. In accordance with the linearized

approach, its location at any later instant t 5t is x � U �t ÿ t�; Z � y and the shedding corresponds to

x � 0. Then, at instant t � t its density gy�0; y� is the time variation of G�y; t� at the span location y,

expressed as a streamwise variation with the help of the freestream velocity U, and gx�0; y�
corresponds to the span variation of G�y; t� at the same instant and span location:

gy�0; y� � 1

U

@G�y; t�
@t

; gx�0; y� � @G�y; t�
@y

: �8�

At any later instant t 5t these values are kept unchanged while the particle is convected with the

freestream velocity:

gx�x; Z� � gx�U �t ÿ t�; y�; gy�x; Z� � gy�U �t ÿ t�; y�: �9�
The induced downwash on the lifting-line de®ned by (5)±(7) is now ready to be incorporated in the

two-dimensional model.

4.2. Two-dimensional problem

This two-dimensional problem, according to Section 3, deals for each span section, i.e. for each

y� constant plane, with the unsteady aerofoil theory. It is treated here within a linearized framework,

as this choice is consistent with the theoretical 3D exposition and is thus preferred, but this is not

compulsory and a non-linear one can be substituted.

This classical problem (see e.g. References 17±19) is presented in Figure 3. Couchet's notation and

formulation are adopted. Each aerofoil of the lifting-line is considered as a rigid ¯at plate on the

segment [ÿ2a, 2a] with a chord c � 4a. Its movement deduced from the lifting-line motion and

considered in a motionless ¯uid, is de®ned by the velocity components of the aerofoil-attached frame

relative to an inertial frame, �l�t�;m�t�; q�t��, expressed in the aerofoil-attached frame. Here l�t�
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represents the aerofoil longitudinal motion and it not very different from a rectilinear translatory

motion l0 (which is the opposite of the freestream velocity: ÿU � l0 < 0�, m�t� is the vertical heave

motion and q�t� is the pitch motion around the aerofoil centre:

l�t� � l0 � ~l�t�; m�t� � ~m�t�; q�t� � ~q�t�;
where the linearization assumes that ~l; ~m and c~q are small compared with l0.

At time t the linearized wake on the OX-axis lies between the trailing edge at X � 2a and the

position at that time of the vortex particle shed at initial time t � 0;X �0; t� � 2aÿ l0t. Each vortex

particle X �t; t� is imparted the vortex density g�X �, which is determined when shed at time t � t, and

convected in the X-direction with velocity ÿl0 relative to the aerofoil-attached frame:

X �t; t� � 2aÿ l0�t ÿ t�. Particularly, X �t; t� � 2a represents the particle being shed at the current

instant t.

Then at instant t the set of equations describing this problem is

t 2 �0; T � :

@G�t�
@t
� l0g�X �t; t�� � 0; �10�

G�t� � ÿ4pa�m� qO� �
�X �0;t�

2a

��������������������
w� 2a

wÿ 2a

� �s
ÿ 1

�
g�w� dw;

"
�11�

with w � w�t; t�.
Equation (10) is obtained from Kelvin's theorem and expresses the circulation conservation;

equation (11) is the integral equation, combining the tangency condition and the Kutta±Joukovski

condition at the trailing edge, that governs the time evolution of the circulation G�t� around the plate.

The ®rst term on the right-hand side of (11), where the dependence of m and q on t has been omitted,

represents the aerofoil motion contribution (O is a characteristic length, equal to a in the case of a ¯at

plate; the expression qO represents the rear quarter-chord point motion due to the pitch q)19,20 and the

second term gives the wake contribution.

It is possible to expand to ®rst order for wÿ 2a� a as��������������������
w� 2a

wÿ 2a

� �s
ÿ 1 � 2a

wÿ 2a
� o

a

wÿ 2a

� �
: �12�

Thus the kernel of the integral describing the wake contribution in (11) may be written to ®rst order in

a=�wÿ 2a� as ��������������������
w� 2a

wÿ 2a

� �s
ÿ 1

" #
g�w� � 2a

wÿ 2a
g�w� � 4pa

1

2p
g�w�

wÿ 2a

� �
� 4pak�w�; �13�

Figure 3. Two-dimensional linearized problem
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where accordingly k�w� may be interpreted as the velocity at the trailing edge of the aerofoil induced

by the vortex particle at position X � w with density g�w�.
Consequently, when writing the integral equation (11) describing the 2D unsteady problem, the

above result allows us to represent the effect of the 2D far wake (i.e. for w� a� with an induced

velocity ®eld. Therefore it is possible to split the unsteady two-dimensional wake S2D into two parts:

X 0 � a : S2D � �2a;X 0� [ �X 0;X �0; t��:
Hence the integral equation (11) reads

G�t� � ÿ4pa�m� qO� �
�X 0

2a

��������������������
w� 2a

wÿ 2a

� �s
ÿ 1

" #
g�w� dw� 4paK; �14�

with

K �
�X �0;t�

X 0
k�w� dw � 1

2p

�X �0;t�

X 0

g�w�
wÿ 2a

dw: �15�

4.3. General formulation of problem

The three-dimensional correction due to the induced velocity ®eld as displayed in Section 4.1 must

now complete the unsteady two-dimensional formulation presented in Section 4.2.

In the case of straight unswept wings the lifting-line is the segment

x � z � constant � 0; ÿb=24 y4 b=2:

The aerofoil dimensional characteristics depend only on y according to the wing plan-form de®nition

c � c�y�; a � a�y�; O � O�y�;
as do the aerofoil motion parameters

l�y; t� � l0 � ~l�y; t�; m�y; t� � ~m�y; t�; q�y; t� � ~q�y; t�;
which are deduced for each span station y from the wing motion parameters.

Then in each wing section the two-dimensional problem deals with the unknown circulation G�y; t�
at the considered section's span location y and time t. This problem is governed by a set of equations

of the same kind as the set (10), (14) in Section 4.2, to which is added the reference to the considered

section, y, and the effect of the induced velocity wi (for simpler presentation the dependence of

m;o;O and a on y has been omitted; furthermore, g�w; y� refers to the two dimensional vortex density

g�w�, as introduced in Section 4.2, corresponding to the section's span location y):

y 2 �ÿb=2; b=2�; t 2 �0; T � :
@G�y; t�
@t
� l0g�X �t; t�; y� � 0; �16�

G�y; t� � ÿ4pa�m� qO� �
�X 0

2a

��������������������
w� 2a

wÿ 2a

� �s
ÿ 1

" #
g�w; y� dw� 4paK�y; t� � F�y; t�; �17�

where K�y; t� represents, according to (13), the velocity induced by the 2D far wake �X 0;X �0; t�� in

relation to the considered wing section y,

K�y; t� � 1

2p

�X �0;t�

X 0

g�w; y�
wÿ 2a

dw;
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and F�y; t� represents the effect, for the considered section, of the induced velocity, wi as developed

in Section 4.1.

Then in the same manner as for the steady case a vertical induced velocity on the lifting-line,

wi�y; t�, may be represented by an opposite vertical movement in a motionless ¯uid, m0�y; t�, of the

aerofoil located at this point, i.e. m0�y; t� � ÿwi�y; t�, so that

F�y; t� � ÿ4pam0�y; t� � 4pawi�y; t�;
where wi�y; t� is expressed by (7), in which wout�y; t� is obtained from (5) and wwi�y; t� from (4).

The contribution of K�y; t� and wi�y; t� may then by introducing Wi�y; t�, be grouped together as

4paK�y; t� � 4pawi�y; t� � 4pa�K�y; t� � wi�y; t�� � 4paWi�y; t�;
so that the integral equation (14) that governs the two-dimensional local problem can be written in the

form

G�y; t� � ÿ4pa�m� qO� �
�X 0

2a

��������������������
w� 2a

wÿ 2a

� �s
ÿ 1

" #
g�w; y� dw� 4paWi�y; t�: �18�

Finally, Wi�y; t� in (18) can be rearranged

Wi�y; t� � K�y; t� � wi�y; t� � K�y; t� � wout�y; t� ÿ wwi�y; t�;
with

K�y; t� � 1

2p

�X �0;t�

X 0

g�w; y�
wÿ 2a

dw; wwi�y; t� � 1

2p
FP

�x0

0

gy�x; y�
x

dx;

where K�y; t� corresponds to the 2D far wake in the 2D problem and wwi�y; t� corresponds to the 2D

wake linked with the outer domain Owi. It appears from Section 2 that both integrals relate to the

same two-dimensional wake. In fact, it is possible to relate K�y; t� and wwi�y; t� together through the

variable change from wÿ 2a to x. This means particularly that x0 corresponds to X �0; t� and that the

two functions wÿ 2a! g��wÿ 2a�; y� and x! gy�x; y� are identical. Consequently, after having set

x0 � X 0 ÿ 2a� a and split the integral in wwi�y; t� into two parts as

wwi�y; t� � 1

2p
FP

�x0

0

gy�x; y�
x

dx� 1

2p

�x0

x0

gy�x; y�
x

dx �19�

(the ®nite part concerns the integral's kernel singularity for x � 0, and so only the ®rst integral in

(19)), it can be seen that K�y; t� is equal to the second term on the right-hand side of (19), such that

Wi�y; t� ®nally reads

Wi�y; t� � wout�y; t� ÿ 1

2p
FP

�x0

0

gy�x; y�
x

dx: �20�

In (20) the densities gx�x; Z� and gy�x; Z� appear, which are linked to the time and span variation of

the distribution of circulation G�y; t� by relations (8) and (9) in Section 4.1.

It is interesting to notice the following in equation (18).

1. The 2D model only concerns the near wake �2a;X 0�, as the contribution of the far wake

�X 0;X �0; t�� vanishes with part of the induced velocity.

2. Wi�y; t�, as de®ned in relation (20), appears as an `effective induced velocity', which combines

the effect on the lifting-line of the entire 3D wake �wout�y; t�� with the effect of the nearer part of

Owi; �0; x0�, which is a 2D-type one.
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As a conclusion to this section, it can be stated that, for each instant t and span location y, equation

(18), completed with relation (20), together with the vorticity conservation relation (16) and relations

(8) and (9), builds up the intended unsteady lifting-line model, and its solution G�y; t� is the solution

to the ®rst-order approximation of the outer (lifting-line) problem concerning the unsteady motion of

a straight, unswept, large aspect-ratio wing.

This model is obtained from a linearized approach and is rigorously applicable only to that case.

Nevertheless, it may be stated that, as the steady lifting-line model comes under the same

linearization process and has been widely extended to non-linear situations (non-¯at plate aerofoils,

free wake, etc.), it is quite possible in the same manner to apply the unsteady lifting-line model

described above to non-linear situations.

5. QUASI-STEADY APPROACH

At the same time as the above-evolved unsteady model, a quasi-steady-type model will be evaluated.

This quasi-steady approach, already mentioned earlier, actually consists of applying Prandtl's steady

case approach to an unsteady situation. This means that at each instant during the wing motion the

two-dimensional model and the induced velocity scheme are steady-type ones. Actually, the quasi-

steady model is included in the more general unsteady lifting-line one and will here be derived from

it.

More precisely, the 2D model involves an expression obtained from (11) in Section 4.2, in which

the term corresponding to the wake has been withdrawn, so that it becomes

G�t� � ÿ4pa�m� qO�: �21�
Most of the currently used quasi-steady models omit the term qO, which represents the effect of the

rotation of the pro®le, and only consider a translatory model; this presents the advantage that steady

experimental aerofoil characteristics, with Mach number, Reynolds number, sweep effect and any

other desired corrections, can be included. This is all the more an advantage since the induced

velocity on the lifting-line is directly added to the 2D model described by equation (21) as an

incidence correction effect. It will here be taken into account, in a quite equivalent manner, as an

induced velocity that can be immediately obtained from relation (5) in Section 4.1:

W
QS
i �y; t� � wout�y; t� � ÿ 1

4p

�b=2

ÿb=2

�x0

0

gy�x; Z��ÿx� � gx�x; Z��yÿ Z�
��ÿx�2 � �yÿ Z�2�3=2 dx dZ: �22�

Most of, if not all, the quasi-steady models do not clearly consider the integral's singular behaviour

and do not mention how it has to be evaluated. In fact, as these approaches are very often based on an

already discretized vision of the problem, this singular aspect is evaded when using constant doublet

panels, as will be seen later.

Finally, the considered quasi-steady approach can be summarized, using the same process and

formalism as for the unsteady one, by the following relations:

y 2 �ÿb=2; b=2�; t 2 �0; T � :
@G�y; t�
@t
� l0g�X �t; t�; y� � 0 �23�

G�y; t� � ÿ4pa�m� qO� � 4paW
QS
i �y; t�; �24�

where the quasi-steady induced velocity W
QS
i is obtained from an evaluation of (22) and where

gx�x; Z� and gy�x; Z� are obtained in the same way as for the unsteady case, as described in Section 4.1.
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6. NUMERICAL IMPLEMENTATION

It is now possible to derive a numerical implementation for both the unsteady and quasi-steady

lifting-line models evolved in the previous sections. The primary aim of the implementation

presented in this paper is to validate the unsteady lifting-line model and compare it with a quasi-

steady one; this is why plainness has been favoured. What follows is certainly not the only way for

such a numerization, and more sophisticated ones can easily be devised. Therefore this section only

presents the main points about the numerical scheme, all the more as it makes use of a rather classical

discretization scheme, and emphasis will only be laid on the particularities induced by the approach.

First, a linearized framework has been selected; this supposes that the wing's small-amplitude

motion is not very different from a rectilinear uniform translation along the x-axis, with speed l0, so

that the wake will be considered as remaining in the plane �O; x; y� and convected relatively to the

lifting-line with the average speed l0.

The following discretization bases have been adopted.

1. The lifting-line is approximated by N segments along the span, possibly different in size.

2. The time interval �0; T � is divided into constant-amplitude time steps Dt.

3. The main unknown of the problem, G�y; t�, is approximated by a step function on each

discretization interval in y and t:

y 2 �yj; yj�1�; t 2 �tk ; tk�1� : G�y; t� � Gjk;

this, in a very classical manner, corrresponding to constant doublet panels on the wake.

Consequently, the 3D wake is approximated by a classical vortex ®lament lattice (see Figure 4),

composed of closed rectangular vortex elements with strength Gjk , with dimension Dy in the

span direction and Dx � l0Dt in the streamwise direction.

At each time step the linear equations obtained from the discretization of the system (16), (18) are

written at a ®nite number of collocation points, which are the middles of the segments approximating

the lifting-line.

Numerical tests have shown that the X 0-value which splits up the 2D wake, as appearing in relation

(18), may be taken as the order of the chord. As a matter of fact, it has been chosen as

X 0 ÿ 2a � Dx � l0Dt, which corresponds to the part of the 2D wake shed during the current time step

(other choices are certainly suitable and this one seems to slightly violate the hypothesis X 0 � a, but

the results presented later on do not seem to illegitimate it). As a consequence, the integral in (18)

Figure 4. Unsteady three-dimensional wake discretization
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refers to the interval �2a;X 0� and thus to the current time step; the vortex density g�w; y� in this

integral is approximated assuming a linear variation with respect to w on the interval Dx � l0Dt

(another discrete approximation for g�w; y�, a constant value for example, is conceivable, but would

be less precise for a given time step value).

The expression for Wi�y; t� in relation (20) involves the induced velocity wout�y; t�, as de®ned by

(5), on the lifting-line by the 3D unsteady wake, which is approximated in the discrete scheme by the

vortex lattice mentioned above. This discretization of the wake presents the advantage that it allows a

straight approximation of the ®nite part of the integral in Hadamard's sense in (5). The fact is that in

the case of a straight lifting-line the ®nite part in Hadamard's sense has to be considered because of

the logarithmic singularity which comes from the densities gx�x; Z� and gy�x; Z�; particularly, in the

case of an unswept lifting-line this singularity only comes from gy�x; Z� (no ®nite part has to be

considered for steady ¯ows, as in this case, gy�x; Z� � 0, and the integral has to be evaluated as a

principal value Cauchy-type integral). After having identi®ed the in®nite part of an integral, the

evaluation of its ®nite part in Hadamard's sense consists of removing this in®nite part through a

limiting process. Therefore, as the wake's discrete scheme concentrates vorticity in ®laments along

the edges of the panels, there is no distributed vortex density, and the logarithmic singular behaviour,

especially locally on the lifting-line's collocation points, has been removed. This is why it can be

assumed that a vortex lattice discretization of the wake performs a discrete evaluation of the ®nite

part of the integral de®ning wout�y; t�, which can easily be computed using the classical Biot±Savart

law applied to the vortex ®laments constituting the lattice.

The evaluation of the second term of Wi�y; t� in (20) requires some comments. It involves the two-

dimensional wake corresponding to the outer domain Owi, or more precisely, the part extending

between the lifting-line and x0, i.e. the interval �0; x0�. The same choice as for the integral in (18) will

be made, and it will be considered in the 2D wake shed during the current time step, so that

x0 � Dx � l0Dt. This integral has also to be taken as a ®nite part in Hadamard's sense; moreover, this

term combines with wout�y; t� in the expression of Wi�y; t� and thus requires the same level of

discretization. These are the reasons why its evaluation will call for the 2D equivalent of the vortex

lattice, i.e. a point vortex approximation of the 2D wake. Furthermore, the vorticity distribution of

this 2D wake, as mentioned in Section 4.1, corresponds to the local value of the spanwise vorticity of

the 3D wake; thus, following the same process in the discrete scheme, this contribution is evaluated

through the velocity induced by a system of 2D vortices whose intensities and streamwise locations

are identical to those of the corresponding ®laments of the vortex lattice. Finally, as only the current

time step is involved, this system reduces to one 2D vortex located at a distance Dx � l0Dt from the

lifting-line, and whose intensity is equal to that of the ®lament of the vortex lattice located at the same

distance (see Figure 5).

A time-marching computation algorithm is then adopted. This means that at computation time

tn � nDt the unknowns of the problem are the values Gjn for j � 1; . . . ;N , as the values Gjk ,

corresponding to tk � kDt with k < n, have been computed at the previous time steps.

Once their discretization has been carried out according to the principles described above in this

section, equations (16) and (18) lead, at computation time tn, to a linear set of N equations related to

the N unknowns Gjn, which may be formally written for each collocation point ym as

m � 1; . . . ;N:
PN
j�1

aj�ym�Gjn � 4pa�m�tn� � q�tn�O� �
PN
j�1

Pnÿ1

k�1

bjkGjk; �25�

where a;m; q and O may vary with y, as stated earlier, and so have different values according to ym.

This system is solved numerically using a classical linear system resolution method. Then a Dt

shift in the computation time values allows us to proceed with the next time step.
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The same algorithm and discretization process have been applied to the quasi-steady model

described above. Particularly, G�y; t� and the 3D wake are approximated in the same way, and

equation (24) is discretized on the same basis as equation (18) of the unsteady model. It is, however,

simpler, as in the quasi-steady case the 2D model does not include any unsteady wake, and the

induced velocity W
QS
i �y; t� is nothing else than wout�y; t�, whose discretization is described above.

Thus it may be pointed out that the unsteady lifting-line model is algorithmically identical to and

numerically only slightly different from the quasi-steady one. Consequently, switching from a quasi-

steady to an unsteady model induces only a small additional programming effort and, for given

lifting-line discretization and time step values, only a slight increase in computation run time, as most

of it can be attributed to the computation of wout�y; t� that the two models share in common.

7. SOME NUMERICAL RESULTS

The two models described above, which from now on will be referred to as the QS (quasi-steady) and

ULL (unsteady lifting-line) models, have been applied to three different unsteady wing motions:

(a) an instantaneous gust entry for a ¯at wing initially at incidence 0� and corresponding to a

geometrical incidence of 5�

(b) two vertical sinusoidal heave oscillations with reduced periods ~T � UT=�c � 20 and 60 (where

T is the motion period and �c � b=AR is the mean wing chord) and with amplitude

A � �0:087UT .

The ®rst one is a very classical, and critical, unsteady aerodynamics benchmark, for which results

are available (see e.g. References 16 and 21). The other two are simple periodic movements, and the

chosen reduced periods are representative of the working conditions of respectively the foot and the

tip of a helicopter rotor blade. These are clearly low-frequency motions in the sense of Section 2 and

fall within the above-presented ULL model's domain of application.

Unless noted otherwise, the considered wing is rectangular, with aspect ratio AR � 10.

The time evolutions are presented as a function of the dimensionless time ~t � Ut=�c, which in fact

coincides with the number of mean chords �c travelled during the physical time and is a very useful

dimensionless time for unsteady inviscid problems. The time steps are non-dimensionalized in the

same way: D~t � UDt=�c. The computations for the two heave oscillations have been performed on

Figure 5. Discrete unsteady induced velocity scheme
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three motion periods and the results are presented for the ®rst half of the third one, as the movement

is symmetrical; these results can thus be considered as periodically established.

For both models the computation run times ranged from a few seconds to a few minutes on a

486DX personal computer.

7.1. Quasi-steady model

The ®rst three ®gures concern the quasi-steady model. Figure 6±8 show the time evolution of the

non-dimensional circulation ~G�y; ~t� � G�y; ~t�=U �c at the span station y=b � 0�275 for different

reduced time step values D~t for the three wing motions presented above.

Figure 6. Quasi-steady modelÐinstantaneous gust entry: ~G�y; ~t� at span station y=b � 0�275 for different reduced time step
values D~t

Figure 7. Quasi-steady modelÐheave oscillation with ~T � 20 : ~G�y; ~t� at span station y=b � 0�275 for different reduced time
step values D~t (®rst half of third period)
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These ®gures clearly show the time consistency problem to which the QS model is subjected.

Actually, a numerical scheme is said to be consistent relative to the time discretization if the solution

it produces tends asymptotically towards the solution of the continuous (non-discretized) problem

when the time step tends towards zero. Now, and even if the corresponding actual continuous

solutions are not explicitly known, it is easy to notice that the solutions obtained in all three cases

drift in phase and amplitude without tending towards any tangible limit when the time step decreases,

and this is all the more obvious since the unsteadiness is important. This non-consistency can

obviously be attributed to the fact that the QS model, based on a steady-type formulation, is only

valid in the limiting case of very low frequencies and should not be applied outside this range.

Anecdotally, numerical tests have shown that the QS model solutions, in all cases, coincide with

reference solutions (unsteady lifting-line model and others) for a reduced time step of about 0�16

chord.

7.2. Unsteady lifting-line model

The next ®ve ®gures concern the unsteady lifting-line model.

Figure 9 illustrates the model convergence in relation to the number of discrete segments on the

span � ~G�y; ~t� approximate solution for impulsive gust entry at ~t� 10 chords, which should be very

close to the steady state solution, for 10, 20 and 40 segments on the span), compared with the

corresponding 3D steady solution (the same wing with a steady 5� angle of attack) obtained with a

classical Glauert±Carafoli method.

Figures 10±12 exhibit the evolution of ~G�y; ~t� at the span station y=b � 0�275 for different reduced

time step values for the same three wing motions. These ®gures have to be compared respectively

with Figures 6±8 of Section 7.1. In contrast with the QS model, the time consistency of the ULL

model is quite clear, even in the most severe case of impulsive motion. It can be noticed in that case

that the ®rst computed value is obviously underestimated; this may certainly be attributed to the

numerical scheme, and the ®rst computation step probably deserves a more re®ned numerical

scheme. Nevertheless, it is particularly noticeable that a time step as large as one chord already

Figure 8. Quasi-steady modelÐheave oscillation with ~T � 60 : ~G�y; ~t� at span station y=b � 0�275 for different reduced time
step values D~t (®rst half of third period)
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provides a rather satisfactory solution. The case of the translatory oscillation is even more interesting,

as quite large time step values (D~t � 4 chords for ~T � 20 chords and D~t � 10 chords for ~T � 60

chords) lead to solutions very near to those obtained with small time step values, which may be

considered as converged.

Figure 13 compares the time evolution of the ratio of the wing's instantaneous lift to its ®nal steady

lift for impulsive gust entry and for different aspect ratios �AR � 6; 10 and 1 (two-dimensional

case)). It may be pointed out that the ULL model behaves quite satisfactorily relative to the aspect

ratio, as it shows the classical result that the lift response of the wing is all the faster since the aspect

ratio is small. This ®gure also compares this evolution with a result of Jones21 for an elliptic wing

Figure 9. Unsteady lifting-line model convergenceÐinstantaneous gust entry: effect of number of discrete segments on span
(10, 20 and 40 segments) on ~G�y; ~t� for impulsive incidence setting at ~t � 10 chords; comparison with a 3D steady solution

Figure 10. Unsteady lifting-line modelÐinstantaneous gust entry: ~G�y; ~t� at span station y=b � 0�275 for different reduced time
step values D~t
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with aspect ratio AR � 6. It can be noticed that the ULL model results for the same aspect ratio

convincingly coincide and the slight discrepancy between these two results can certainly be imputed

to the plan-form difference (a rectangular wing versus an elliptic one).

In conclusion of this section, it may be considered that the results presented above validate the

principles of the unsteady lifting-line approach and its numerical implementation. In fact, it is clear

that this validation has to be more thoroughly carried out, but this comes up against the problem of

®nding reliable validation benchmarks. Nevertheless, it can be noted from the above numerical study

that the ULL model is time-consistent and that the numerical results it produces may be considered as

Figure 11. Unsteady lifting-line modelÐheave oscillation with ~T � 20 : ~G�y; ~t� at span station y=b � 0�275 for different
reduced time step values D~t (®rst half of third period)

Figure 12. Unsteady lifting-line modelÐheave oscillation with ~T � 60 : ~G�y; ~t� at span station y=b � 0�275 for different
reduced time step values D~t (®rst half of third period)
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converged for quite large time steps. Furthermore, the comparisons with the results of R. T. Jones

provide us with a quantitative validation.

8. CONCLUSIONS

The work presented in this paper allows us to put forward the basis for a time-marching unsteady

lifting-line approach and the ensuing numerical implementation. It actually uses the same process and

algorithm as the quasi-steady one, which is in fact Prandtl's approach for steady ¯ows applied to

unsteady cases.

This approach consists of searching for the solution to the ®rst-order unsteady outer problem, i.e.

the time evolution of the spanwise circulation distribution along the lifting-line, through the

resolution for each span section of a 2D unsteady problem, which takes into account the three-

dimensional aspect of the problem through an unsteady induced velocity on the lifting-line. The

theoretical developments based on the MAE technique allows us to justify this approach and, in this

context, to clarify the concept of an unsteady induced velocity on the lifting-line.

A simple linearized time-marching numerical implementation has been devised for the ULL model

as well as for the QS one. This allows us to state that the QS model numerization cannot be

considered as time-consistent, whereas the ULL one is; furthermore, the ULL model's numerical

implementation accepts large computation time steps, which should guarantee signi®cant computing

time savings in engineering applications.

At present, amongst all the improvements that can be brought to this basic model, two are in

progress that deals with topics which do not bring any new theoretical problems; these are the

extension of the formulation to swept and curved wings, and the introduction of a free vortex wake

instead of a linearized one.
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